COURSE DESCRIPTION

1. GENERAL

1. OLIVLINAL			
SCHOOL	ENVIRONMENT, GEOGRAPHY AND APPLIED		
	ECONOMICS		
DEPARTMENT	GEOGRAPHY		
LEVEL OF COURSE	Postgraduate		
COURSE CODE		SEMESTER	2
COURSE TITLE	ADVANCED TOPICS OF APPLIED GEOINFORMATION FOR		
	THE ENVIRONMENT		
STRUCTURE OF TEACHING ACTIVITIES		TEACHING HOURS PER WEEK	NUMBER OF CREDITS ALLOCATED (ECTS)
Lectures and laboratory Exercises		2	7.5
TYPE OF COURSE	Optional		
DDEDEOLUCITES			
PREREQUISITES	-		
LANGUAGE OF INSTRUCTION	GREEK		
COURSE OFFERED TO ERASMUS	YES, IN ENGLISH (if required)		
STUDENTS (URL)			
(ORL)			

2. EXPECTED LEARNING OUTCOMES

Learning Outcomes

The main aim of the course is to help graduate students acquire the required skills for using all the spectrum of geoinformation technologies and demonstrate their use in practice in selected environmental applications.

3. COURSE CONTENTS

Some of the key topics covered in the course include: geoinformation in atmospheric correction of geospatial data, advances methods for mapping the environment and their changes over time and space, programming skills in geospatial data analysis, synergistic use of geospatial data and simulation models, sensitivity analysis in geoinformation (principles, methods & tools), advanced topics of hyperspectral and thermal infrared remote sensing, LiDAR use in practice (collection, processing & applications), collection and processing of UAV data with practical applications, geospatial operational products. Apart of the module delivery additional seminars/lab courses are organized to cover some of the previously mentioned topics.

4. TEACHING AND ASSESSMENT METHODS

TYPE OF LECTURES	- In class lectures		
	- Practical training in ICT laboratory		
	-		
ICT USE	ICT use, Internet use and e-class		
	Use of specialized software (open source &		
	commercial) in geospatial data handling		
TEACHING STRUCTURE	Activity	Hours per semester	
	Lectures	26	
	Laboratory practice	55	
	Assignment	40	
	Individual study	64	
	TOTAL	185	
ASSESSMENT METHODS	Assessment Language: Greek		
	Assessment:		
	Written final exam: (70%)		
	Submission of group assignment and		
	presentation: (30%)		
	p. 222		
	Assessment criteria are announced at the start of the		
	semester.		

5. RECOMMENDED READING

ΑΡΧΕΣ ΚΑΙ ΕΦΑΡΜΟΓΕΣ ΔΟΡΥΦΟΡΙΚΗΣ ΤΗΛΕΠΙΣΚΟΠΗΣΗΣ, Κ. ΚΑΡΤΑΛΗΣ & Χ. ΦΕΙΔΑΣ, ΕΚΔΟΣΕΙΣ ΤΖΙΟΛΑ, 2012

ΕΠΙΣΤΗΜΗ ΓΕΩΓΡΑΦΙΚΗΣ ΠΛΗΡΟΦΟΡΙΑΣ-ΟΛΟΚΛΗΡΩΜΕΝΗ ΠΡΟΣΕΓΓΙΣΗ ΚΑΙ ΕΙΔΙΚΑ ΘΕΜΑΤΑ, ΜΑΡΙΝΟΣ ΚΑΒΟΥΡΑΣ, ΚΑΛΛΙΠΟΣ, 2016

ΤΗΛΕΠΙΣΚΟΠΗΣΗ ΠΕΡΙΒΑΛΛΟΝΤΟΣ - Μια προοπτική για τα φυσικά διαθέσιμα, John Jensen, ΕΚΔΟΣΕΙΣ ΕΜΠ, 2015

Οδηγός του ArcGIS Pro, 3η Έκδοση, Shellito Bradley, Τσάτσαρης Ανδρέας (Επιστ. Επιμέλεια), ΕΚΔΟΣΕΙΣ ΤΖΙΟΛΑ, 2021

Επιπλέον Βιβλιογραφία

Pandey, P.C., P.K. Srivastava, B. Bhattacgarya & G.P. Petropoulos (2020): Hyperspectral Remote Sensing: Theory & Applications. Elsevier, ISBN: 978-0-08-102894-0.

Petropoulos, G.P. & T. Islam (2017): Remote Sensing of Hydrometeorological Hazards, ISBN: 978-1-4987-7758-2, Taylor& Francis, ISBN: 978-01-4987-7758-2.

Petropoulos, G.P. & P.K. Srivastava (2017): Sensitivity Analysis in Earth Observation Modelling, Elsevier, 417pp, ISBN: 9780128030110.

Petropoulos G.P. (2013): "Remote Sensing of Energy Fluxes and Soil Moisture Content", 506 pp, Taylor and Francis. ISBN: 978-1-4665-0578-0